Вычислить массу дуги кривой Неопределенный интеграл Определенный интеграл Вычислить тройной интеграл Цилиндрические координаты Вычисление двойного интеграла Криволинейный интеграл Поверхностный интеграл Функция нескольких переменных

Примеры решения задач по математике 1-2 курса технического университета

Полное приращение и полный дифференциал ФНП

Полным приращением функции двух переменных z = f (x, y) в точке (x, y), вызванным приращениями аргументов  и , называется выражение .

Функция z = f (x, y) называется непрерывной в точке (x, y), если бесконечно малым приращениям аргументов соответствует бесконечно малое полное приращение функции.

Если обозначить  – расстояние между близкими точками  и (х, у), то  – это определение непрерывности ФНП на языке приращений.

Если функция z = f (x, y) непрерывна в любой точке (х, у)ÎD, то она называется непрерывной ФНП в области D.

 Функция z = f (x, y), полное приращение Dz которой в данной точке (x, y) может быть представлено в виде суммы двух слагаемых: выражения, линейного относительно  и , и величины, бесконечно малой более высокого порядка малости относительно , называется дифференцируемой ФНП в данной точке, а линейная часть ее полного приращения называется полным дифференциалом ФНП.

Если , где  –бесконечно малые при , то полный дифференциал функции z = f (x, y) выражается формулой: , или:

  (1)

(приращения независимых переменных совпадают с их дифференциалами: Dх = dx, Dy = dy).

Из определения полного дифференциала следует его связь с полным приращением: при малых  и  полное приращение функции Dz примерно равно ее полному дифференциалу:  с точностью до бесконечно малых более высокого порядка малости относительно .

Полный дифференциал функции z = f (x, y) зависит как от точки M(x0, y0), в которой он вычисляется, так и от приращений  и .

 

Производные ФНП высших порядков

Пусть функция z = f (x, y) имеет в точке (x, y) и её окрестности непрерывные частные производные первого порядка  и . Так как  и  являются функциями тех же аргументов x и y, то их можно дифференцировать по x и по y. При этом возможны следующие 4 варианта:

– эти частные производные называются частными производными второго порядка от функции z (x, y).

Частные производные  и  называются смешанными частными производными второго порядка.

Пример. Дана ФНП . Вычислим все её частные производные второго порядка.

Основное свойство смешанных частных производных: если функция z = f (x, y) и её частные производные , ,  и  определены и непрерывны в точке (x, y) и некоторой её окрестности, то в этой точке =, то есть смешанные частные производные при условии их непрерывности не зависят от порядка, в котором производится дифференцирование.

ПОНЯТИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

(СОКР. ФНП)

 

Пусть , ,  – множество точек из , т.е. .

Если для каждой точки ,  существует единствен­ное число , то на  (область определения) задана функция  переменных , причем множество  – множество значений функции.

При   можно записывать ;
при   соответст­венно, например, .

Для функции двух переменных  область определения расположена на плоскости , . График функции двух переменных – множество точек   –
подмножество  и иногда может быть представлен поверхностью .

 Для ,  область определения расположена в пространстве ; для представления графика функции трёх переменных требуется .


Вычисление поверхностных интегралов