Матрицы Вычислить предел Неопределенный интеграл Производная функции Определенные интегралы Двойной интеграл Разложить в ряд Лорана Изменить порядок интегрирования Найти объем тела Вычислить криволинейный интеграл

Примеры решения задач по математике 1-2 курса технического университета

ОДУ высших порядков.

Задание 1.

1) Найти модуль и аргумент чисел  и . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

2) Найти: а). ; б). ; в).

Решение.

1) Изобразим числа на комплексной плоскости. При этом числу  будет соответствовать точка , числу  - точка .

Для нахождения модуля и аргумента заданных чисел воспользуемся формулами:

  и

Получим:

, ,

, .

Чтобы перейти от алгебраической формы записи комплексного числа к тригонометрической и показательной применим формулы:

 и .

Использовав ранее полученные результаты, получим:

,

,

,

.

2) а)

 

б)

 

в) Применим формулу .

при  : ;

при : ;

при :

Вычисление тройного интеграла в сферических координатах.

Переход от декартовых координат к сферическим проводится по формулам: ; ; (рис.5)

 (; ; )

 Тогда тройной интеграл от  по

 области DR3преобразуется

 следующим образом: z

 

 рис.5


Вычисление тройных интегралов