Вычислить массу дуги кривой Неопределенный интеграл Определенный интеграл Вычислить тройной интеграл Цилиндрические координаты Вычисление двойного интеграла Криволинейный интеграл Поверхностный интеграл Функция нескольких переменных

Примеры решения задач по математике 1-2 курса технического университета

Справочный материал к выполнению контрольной работы №2

Тройной интеграл

Вычисление тройного интеграла в декартовых координатах

Пусть функция 3-х переменных u = f (x, y, z) задана и непрерывна в замкнутой области V xOyz. Тройной интеграл от этой функции по области V имеет вид: , где .

Если область V – правильная в направлении оси Oz (рис. 5), то ее можно задать системой неравенств:  где z = z1 (x, y) и z = z2 (x, y) – это уравнения поверхностей, ограничивающих область (тело) V соответственно снизу и сверху (рис. 5).

 Если область D можно задать системой неравенств

  то

В этом случае тройной интеграл от функции u = f (x, y, z) по области V можно вычислить при помощи трехкратного повторного интеграла:

.

Здесь каждый внутренний интеграл вычисляется по «своей» переменной интегрирования в предположении, что переменные интегрирования внешних интегралов остаются постоянными.

Существует всего 6 вариантов сведения тройного интеграла к трехкратному в декартовых координатах (в зависимости от выбранного порядка интегрирования).

 

Вычисление тройного интеграла в цилиндрических координатах

Цилиндрические координаты точки М в пространстве – это ее полярные координаты на плоскости xOy и координата z, т.е. .

Преобразование тройного интеграла по области V к цилиндрическим координатам осуществляется при помощи формул , , .

Если область V задана системой неравенств:

  причем  то V:

Вычисление тройного интеграла по области V в цилиндрических координатах сводится к вычислению трехкратного интеграла в соответствии с записанной системой неравенств для области V:

.

 

 

Некоторые приложения тройных интегралов

 Если подынтегральная функция f (x, y, z) º 1, то тройной интеграл от нее по области V равен мере области интегрирования – объему пространственного тела, занимающего область V: .

Если  – это плотность неоднородного материала (т.е. масса единицы объема), из которого изготовлено тело, то при помощи тройного интеграла можно вычислить массу тела, его статические моменты относительно координатных плоскостей и другие величины. Например, формула для вычисления массы тела имеет вид:

.  (12)

ТЕОРЕМА 1 (достаточное условие существования точки локального экстремума функции)

Если 1)   – непрерывна на  и дифференцируема в ; , кроме возможно точки ;

 2)   или не существует ;

 3) ,  меняет знак в точке  при переходе слева направо через ,

то  имеет локальный экстремум в точке .

Доказательство. Пусть для определенности  на  (имеет знак "+") и  на  (имеет знак "–"). Тогда на  , т.е. ;

на   , т.е. ,

т.е. приращение функции ,  сохраняет знак, в окрестности точки ; а это означает (по определению), что  – точка локального максимума 
функции .

Аналогичные рассуждения в случае смены знака производной  с "–" на "+" при переходе слева направо через стационарную точку  ().

Заметим, что обратное утверждение неверно, т.е. в точке  функция может иметь  (например, ), а производная  меняет знак в бесконечном множестве точек на всякой окрестности точки .

Контрпример. , .


Вычисление криволинейных интегралов