Метод проецирования Комплексный чертеж линии Комплексный чертеж пространственной кривой Классификация поверхностей Поверхности вращения второго порядка Конические сечения Метрические задачи

Начертательная геометрия методы выполнения чертежей и задач

Поверхности вращения второго порядка

Цилиндр вращения

Цилиндр вращения образуется вращением образующей- l(прямой линией) вокруг параллельной ей оси.

Г(i.l), а(а2) Ì Г; а1, а3 =?

Рис. 2-81

Алгоритм построения

1) i ^^ П1, l || i, l - горизонтально проецирующая прямая, значит Г ^^ П1 -цилиндр занимает проецирующее положение относительно П1.

2) Г1 - главная проекция, которая обладает собирательными свойствами, поэтому а1 = Г1,

3) а3 строится по свойству принадлежности линии данной поверхности (а Ì Г) (см. рис. 2-81)

4) Точка 3 расположена на профильном меридиане, поэтому точка 33 является границей видимости на П3

Конус вращения

Конус вращения образуется вращением образующей- l (прямой линией) вокруг оси, которую она пересекает.

F(i, l), a(а2) Ì F; а1, а3 = ?

i ^ П1, l Ç i; l - занимает положение прямой уровня (фронтали)

l- прямая линия, поэтому цилиндр и конус относят так же и к линейчатым поверхностям. Например, конус можно задать другим способом, как линейчатую поверхность F(m,S), S - фиксированная точка, m (окружность, основание конуса) - неподвижная направляющая. Или как циклическую поверхность F(m,l), у которой l-образующая есть монотонно меняющаяся окружность, движущаяся по неподвижной направляющей (прямой линии) -m.

Рис. 2-82

Алгоритм построения а1, а3

1. Сначала отмечают на а2 особые точки (рис. 2.82):

Точка 12 Þ 11, 13 - по принадлежности окружности основания

Точка 42 Þ 41, 43 - по принадлежности главному меридиану

2. Промежуточные: 32 Þ 31, 33 по принадлежности параллели радиусом – R23

3. Точка 22 Þ 21 по принадлежности параллели – R22

22 - 23 по принадлежности профильному меридиану

Видимость кривой - а:

1) На П1 кривая а1 видима, т.к. на П1 видима вся поверхность.

2) На П3 границей видимости служит профильный меридиан (точка 23).

Сфера образуется вращением окружности (l) вокруг оси (ее диаметра)

Эллипсоид вращения

Алгоритм построения главного меридиана однополостного гиперболоида, Y(i, l) (образующая - прямая линия). При построении однополостного гиперболоида, как линейчатой поверхности, главный (фронтальный меридиан) строится по точкам, чем больше точек, тем точнее построения. Рассмотрим алгоритм построения одной точки (Е), взятой на образующей.

Тор- поверхность вращения 4 порядка Поверхность тора образуется при вращении окружности вокруг оси, расположенной в плоскости этой окружности, но не проходящей через ее центр

Винтовые поверхности Винтовой называется поверхность, которая описывается какой - либо линией (образующей) при ее винтовом движении. Как уже отмечалось, что винтовое движение является сложным движением, при котором каждая точка образующей совершает одновременно два движения: вращательное и поступательное. При этом вращение происходит вокруг оси винта, а поступательное вдоль оси винта.

Позиционные задачи Позиционными задачами называют такие, в которых определяется взаимное расположение геометрических фигур в пространстве. Существует три типа позиционных задач: Взаимный порядок геометрических фигур. Взаимная принадлежность геометрических фигур. Взаимное пересечение геометрических фигур.

Решение главных позиционных задач. 3 случая. 3 алгоритма. Способ решения главных позиционных задач, или алгоритм решения, зависит от расположения пересекающихся геометрических фигур относительно плоскостей проекций.

2 алгоритм. Решение задач в случае, когда одна из пересекающихся фигур проецирующая, вторая - непроецирующая.


Начертательная геометрия