Система счисления Сокращение обыкновенных дробей Иррациональные числа Понятие комплексного числа Квадратный трёхчлен Степенная функция

Алгебра лекции и задачи

Иррациональные числа

Оказывается, что для нужд самой математики как, впрочем, и для практики, уже введённых рациональных чисел не хватает. Исторически числа, отличные по своей природе от рациональных, впервые появились уже при желании вычислить диагональ квадрата по его стороне.

1
Рисунок 1.3.1.1

Покажем, что длина такой диагонали не может быть выражена рациональным числом. Рассмотрим квадрат со стороной, равной 1. Пусть длина его диагонали равна d . Тогда, по теореме Пифагора, имеем: то есть Предположим, что d – рациональное число. Тогда существуют такие числа что и дробь несократима. Получаем: Из этого равенства следует, что, так как правая его часть делится на 2, то и его левая часть делится на 2. Значит и число m делится на 2. Другими словами существует такое целое число что m  = 2 k . Но тогда Однако из последнего равенства аналогично следует, что число n делится на 2. Последнее обстоятельство приводит к противоречию, так как числа m и n не могут быть одновременно чётными (по предположению, дробь несократима). Значит, не существует такого рационального числа, которое бы выражало длину диагонали квадрата.

Числа, которые не являются рациональными, то есть не являются ни целыми, ни представимыми в виде дроби вида , где m – целое число, а n – натуральное, называются иррациональными .

Из нашего примера следует, что такие числа существуют: длина диагонали квадрата со стороной 1 является именно таким числом. Аналогично можно доказать, что не существует рационального числа, квадрат которого равен 5, 7, 10, то есть числа являются иррациональными. Теперь вспомним, что любое рациональное число может быть представлено в виде периодической десятичной дроби и наоборот, любая десятичная периодическая дробь может быть представлена в виде рационального числа.

Любое иррациональное число можно записать в виде бесконечной непериодической дроби, и любая непериодическая дробь является иррациональным числом.

Множества рациональных и иррациональных чисел вместе составляют множество действительных чисел .

Вычитание. Чтобы вычесть из одного действительного числа другое действительное число, нужно к уменьшаемому прибавить число, противоположное вычитаемому.

Отношения между числами

Найти число по данной величине его указанного процента. Для того чтобы решить эту задачу, нужно данную величину разделить на дробь, выражающую указанный процент.

Понятие о среднем

Если дан ряд величин, то всякая величина, заключённая между наибольшей и наименьшей из данных величин, называется «средней». В математике наиболее распространены следующие средние.

В практической деятельности человека бывают числа двух видов: точные и приближённые . Часто знание лишь о приближённом числе достаточно для понимания сути дела. Иногда употребляют приближённые числа, так как точное не требуется, а иногда точное число невозможно найти в принципе.

Округление чисел

Вычислить если

Найти


Алгебра Решение контрольной